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Wave velocity in parallel flows of a viscous fluid 

By CHIA-SHUN YIH 
Department of Engineering Mechanics, The University of Michigan 

(Received 8 December 1972) 

It is shown in this note that the velocity of unstable or neutral waves in plane 
Poiseuille flow or plane Couette-Poiseuille flow, or of axisymmetric waves in 
Poiseuille flow, stable or unstable, must lie within the range of the velocity of 
the flow. 

1. Introduction 
Bounds for the real part of the complex wave velocity c appearing in the Orr- 

Sommerfeld equation have been given by Synge (1938) for plane Couette and 
Poiseuille flows. Synge's results were extended by Pai (1954) to apply to more 
general flows, and Pai's results were sharpened by Joseph (1968). For the plane 
Couette flow it is already evident from Synge's results that the real part of 
c = c,+ic, must be within the range of the velocity U of the flow, whatever 
its imaginary part may be. For other flows the bounds of c, given by all three 
authors mark an interval greater than the range of U ;  but their results are for 
all possible values of ci, hence for all kinds of waves - amplified, neutral or damped. 

In  this note we shall derive some results from which we deduce immediately 
that the velocity c, of unstable and neutral waves (in fact, even some damped 
ones) in plane Poiseuille and plane Couette-Poiseuille flows (combinations of 
a plane Couette flow with a plane Poiseuille flow) must be within the range of 
the velocity of the flow. Furthermore, we shall show that axisymmetric dis- 
turbances in Poiseuille flow (in circular pipes) always propagate with a velocity 
which is within the range of the velocity of the flow, whether the disturbances 
are stable, neutral or unstable. 

2. Recapitulation of some known results for plane flows 
The Orr-Sommerfeld equation is 

(P-a2)2$h = iaB[(U-c)(02-a2)$l-  U"$h], (1) 

in which the unknown q5 is the (complex) amplitude of the stream function, a is 
the wavenumber, R the Reynolds number, U the dimensionless velocity (in the 
x direction), c the complex wave velocity c, + ici and 

D = d/dy, U" = D2U, 

y being the dimensionless Cartesian co-ordinate normal to the direction of flow, 
on which alone U depends. Since the stream function is 

+ = $(y) exp { ia(x  - ct)) ,  
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the rate of growth of the waves is mi, and the waves are stable, neutral or un- 
stable according as ci is negative, zero or positive. The parameters a and R are 
by definition positive. With 4' denoting D4, the boundary conditions are 

$ ( O )  = $'(O) = 0 = $(1) = $'(l). (2) 

By multiplying ( I )  by $*, the complex conjugate of $, and integrating, using 
(2) whenever necessary, Synge (1938) obtained 

J ~ ( D ~ - c c ~ ) $ ~ ~ + ~ c R c ~ J P  = ~ ~ ~ R [ - J ( U - C ) P + / U ' $ # ' * ] ,  (3) 

in which P = 1$'12+a21$]2, 

the limits of integration are understood to be zero and one, and the differential 
dy is omitted for all integrals, for convenience. Since 

Re 1 O,$$'* = -+I U"($12, 

we conclude from (3), upon taking its imaginary part, that 

JCU-cJP+- /  ; U" I $12 = 0. (4) 
From (4) we obtain the following known results which were already evident from 
the results of Synge [see equation (3) of Joseph (1968), which is Synge's result]: 

C, > Umin if U" 0 throughout, (5) 

C, < Umax if U" < 0 throughout, (6) 

U& < C, < Urnax if U" = 0 throughout. (7) 

These results of Synge are for any waves (or disturbances), amplified, neutral 
or damped. 

3. New results for unstable and neutral waves in plane flows 
Let P(y) be defined by 

( U - c ) F  = $. (8) 

Note that F is never infinite if ci + 0, or if c, is outside the range of U. The Orr- 
Sommerfeld equation then becomes 

( 0 2 -  a 2 ) 2  [( u - G )  P] = iaR([( u -c)2P']' - a 2 (  u - c)2P), (9) 

in which the prime indicates differentiation with respect to y. The boundary 
conditions on P are, so long as U - c does not vanish on the boundary (we shall 
return to this point later), 

P(0) = P'(0) = 0 = P(1)  = P'(1). (10) 

Multiplying (9) by F*, the complex conjugate of P, and integrating between 
zero and one, using (10) whenever necessary, we obtain 

1 ( u - c,) I ( 0 2  - a2) P 12 - 2 J U" IF' 12 + +J u i v  JP 12 - iC i  J l ( 0 2  - a 2 )  P 12 - a2J U'f I PI 2 

+ s u'(P'P*" - P*'P'') - 4s U"(PP*' - P'P*) + a2 u' FF*' -P*P') s (  
= k R ( -  I [ ( U - C , ) ~ - C C ~ ) & + ~ ~ C ~ I ( U - C , ) & > ,  (11) 
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in which Q = IPF’12+a21P12. ( 1 1 4  

The last four terms on the left-hand side of (11) are imaginary. Taking the real 
part of (1 1), we obtain 

J( U - c,) [I (B2 - a2) FI + 2aRci Q] - 2JU” 1.8’’ I + & ( U ’ V I P ~ ~  - a’s 77” IPI2 = 0. (12) 

From this equation we conclude that 

Urn, > C, if ci > 0, and U” 0, UiV < 0 throughout, (13) 

Umin < C, if ci > 0, and U“ < 0,  Uiv 0 throughout. (14) 

If ci = 0, the function P is well defined if c, > Urn,, or c, < Umin, and (12) states 
that, for neutral waves, 

c, > Urn,, is impossible, or Urn, 2 c,, if U” 2 0, Uiv < 0 throughout, (15) 

c, < Umin is impossible, or Umin < c,, if U” < 0, Uiv 3 0 throughout. (16) 

For plane Poiseuille flow or plane Couette-Poiseuille flows, U” is either positive 
throughout or negative throughout, and Uiv is zero. Hence for such flows (5) ,  
(6), (13) and (14) give 

and ( 5 ) ,  (6), (15) and (16) give 

Umin < C, < for ci > 0, (17) 

Umin < C, < Urnax if U“ > 0,  ci = 0, (18) 

Umin < C, < U m a  if‘ U“ < 0, CC = 0. (19) 

In  the next section we shall show that for neutral waves in plane Poiseuille 
or plane Couette-Poiseuille flows c, cannot attain Umm or Umin. This point is 
important whenever one attempts to calculate the neutral-stability curves by 
asymptotic methods, for if C, = Umm or c,. = Umin the critical layer would always 
include the boundary, however large the Reynolds number, and the existing 
calculations would break down. 

4. Neutral and some damped modes in plane flows 
We now concentrate on plane Poiseuille and plane Couette-Poiseuille flows. 

Thus U” = constant, Uiv = 0. 

We shall d e h e  a new P by 
(U-c,)P = $5, 

where c1 = C, + icIi = C, + i [~ i  + 4+(~tB)-~]. 

Note that P is never infinite if 

The Orr-Sommerfeld equation can then be written as 

or 

ci > -44n2(aB)-1. 

( 0 2  - a2)2 $ + 47i-74” -a”) = i&R[( u - cl) (qY - a24) - U”$], 

(02-  a’) [(D’ - a2) + an2] [( U - ~ 1 )  PI = iccR([( U - c ~ ) ~ P ’ ] ’  - cC2( U - ~ 1 ) ~  q, (22) 
45 F L M  58 
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with the boundary conditions 

F(O) = F‘(0) = 0 = P(1) = F’(1). ( 2 3 )  

By multiplying (22 )  by P* and integrating between zero and 1, using ( 2 3 )  
whenever necessary, we obtain 

T - i 4 ~ 9 ( a R ) - l  J”I(D2-a2)P12- 4 r 2 / ( U  - c , ) Q - ~ v ~ J ” U ’ F F ’ *  

= - iaR/( U - cl)’ Q = - iaR(J[( U - c , ) ~  -&] & - 2ic1, /( U - c,) Q} ,  (24 )  

in which Q is defined by (1  1 a), with the P therein defined by (20), and T stands 
for terms on the left-hand side of (1 I), with the F now defined by (20). Noting that 

Re JU’FB”* = -+/U”IP12, 

and taking the real part of (24 ) ,  we have (now that U” is constant and Uiv = 0) 

J( U - c,) [ 1 (D2 - a2) F I + 2(aRci + 2m2) &] = 2 U I  + a2J U”]F12, (25 )  

in which I = /(p’p-7qPp) 2 0, ( 2 6 )  

as is well known. Thus (25) gives 

c, < Umax if U“ > 0,  ci 2 -2+(aR)- l ,  ( 2 7 )  

Umin < c, if U” < 0,  ci B -2ra(aR)- ’ .  (28) 

Note that for ci 2 -2n2(aR)-1 ( 2 9 )  

F is certainly well defined (i.e. it never becomes infinite) by ( 2 0 ) ,  for any values 
of c,. On combining (27) and (28 )  with (5 )  and (6), we conclude that when (29) 
is satisfied 

for plane Poiseuille and plane Couette-Poiseuille flows; or, ignoring the damped 
modes, we may state the results in the following theorem 

THEOREM 1. The velocity (c,) of neutral or unstable shear waves in plane 
Poiseuille flow or in plane Couette-Poiseuille flows must be within the range of 
the velocity of the flow, and the maximum or minimum of the flow velocity is 
never attained by c,. 

Umin < c, < umax 

Recalling also that ci is bounded (Yih 1969) above by 

with 
I, + 2a211 + a410 

A2 = min 
I,+a210 ’ 

we can state the following theorem. 
THEOREM 2. For plane Poiseuille or plane Couette-Poiseuille flows, the eigen- 

values c for neutral and unstable waves lie inside or on the horizontal boundaries 
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of a rectangle in the complex-c plane which has the range of the flow velocity as 
its base and F, defined by (30) as its height, provided h is positive.? 

This theorem (a rectangle theorem) corresponds to Howard’s semicircle 
theorem for the Rayleigh equation or the differential equation for flows of an 
inviscid stratified fluid (Howard 1961), and I present it to Professor Howard in 
return for the delight that his semicircle theorem has given me. 

5. Results for Poiseuille flow 
For Poiseuille flow the mean velocity is given by 

W(r)  = %(I - r y ,  

in which r is the radial distance from the centre-line of the circular pipe, 
measured in units of the pipe radius r,. For axisymmetric disturbances the Stokes 
stream function $ can be used, and the perturbation part of it, denoted by $‘, 

@‘ = $(r)  exp {ia(z - ct)}, has the form 

in which z is measured along the centre-line in units of r,,, a is the dimensionless 
wavenumber, c is the complex wave velocity (c ,+ic , )  measured in units of W,, 
and t is the time, measured in units of ro/W,. Then the equation governing stability 
is$ 

in which R = W,ro/v is the Reynolds number and 

(L  - a2)2 $ = iaR(1- ~2 - C) (L  - a2) $, (31) 

d2 l d  I d d 1 L = - +  ----=- -+- =-  
dr2 r dr r2 dr(dr  r )  : T [ : $ ( ~  ’1’ 

The boundary conditions are (if primes denote dldr) 

$(l) = 0 = $’(l), $(r) regular a t  r = 0.  (32)  

If (31) is muktiplied by qb* dr and integrated from zero to one, the result is, 
after (32)  has been applied, 

I2 + 2a211+ a410 - iaR (1 - r2 - C) Q dr + i2aR ( ~ 4 ) ’  (T$*)  dr, (33) s: 
in which Q = r-’l(r$)‘p+aarl$p, 

Since 

the real part of J is zero. Taking the imaginary part of (33) ,  we have 

J:(1-r2-c , )&dr = 0, 

-f If h is zero or negative for some R ,  the flow is stable (at most neutrally stable) for 

Apart from slight changes in notation, this is equation (1.3.34) in Lin (1955, p. lo), 
that value of R, and we do not need theorem 2. 

in which CT should read u R. 
45-2 
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which demands that O < C , < l ,  (34) 

which states that c, is within the range of W/W,, or that the dimensional wave 
velocity c,Wo is within the range of W.  

We shall now establish an upper bound for ci. First we note that the regularity 
of $(r) at r = 0 implies that $ ( O )  = 0, as indeed it must, for otherwise the 
radial part (u) of the perturbation velocity would be infinite there. Since 

#(i) = 0 = #(O)  and 0 < r < 1, 

we have 

as is well known. Furthermore, Schwarz’s inequality gives 
4 = J ( l l r )  l(r4)112 ’ J l(r$)’12 2 7r2 J l r42 ,  

i 2  J-(4)W*) G 2 /l(.C3)’1 I.$*l G Jl(r$)’12+ JIr42. 

(35) 

(36) 

14, with I4 = Qdr. I Hence i2J < - 

Taking the real part of (33), we have 

- aRci I4 + i2aRJ = I2 + 2a211 + a410, 
from which we deduce, using (37), the result 

where 

m 2 + 1  A2 
ci < h < --- 

7r2 aR’ 

(37) 

(39) 
I .  + 2a211 + a410 

A2 = min 
14  

The value of h2 can be calculated from (39) and the boundary conditions on #. 
We shall state the results obtained in this section in the following two theorems. 

THEOREM 3. For Poiseuille flow, the velocity c, of all shear waves, whether they 
be stable, neutral or unstable, must be within the range of the velocity of the 
flow, the maximum or minimum of which is never attained by c,. 

THEOREM 4. For Poiseuille flow, the eigenvalues c for neutral or unstable waves 
lie inside or on the lower horizontal boundary of a rectangle in the complex-c 
plane, which has the range of the flow velocity as its base and h defined in (38) 
as its height, provided h is positive. 

This work has been jointly supported by the National Science Foundation 
and the Office of Naval Research. 
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